Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal
New Scheme Based On AICTE Flexible Curricula
Common to All Disciplines | I Semester
3L-1T-0P 4 Credits
Module 1: Calculus (10 hours)
Rolle’s theorem, Mean Value theorems, Expansion of functions by Mc. Laurin’s and Taylor’s for one variable; Taylor’s theorem for function of two variables, Partial Differentiation, Maxima & Minima (two and three variables), Method of Lagranges Multipliers.
Previous Years questions appears in RGPV exam.
Q.1) Prove that $\frac{\pi}{3} > \frac{1}{\sqrt{53}}\cos^{-1}\frac{3}{5} > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem. (Nov-2022)
Q.2) Find the minimum and maximum value of $f(x,y)=x^3+3xy^2-3x^2-3y^2+4$. (Nov-2022)
Q.3) Find C of Cauchy's Mean value theorem on [a, b] for the function $f(x)=e^x$ and $g(x)=e^{-x}, (a,b>0)$. (Nov-2022)
Q.4) State Rolle's theorem hence verify for $f(x)=x^2+2x$ defined in the interval [-2, 0]. (June-2023, Dec-2024)
Q.5) Find the first six terms of the expansions of the function $e^x\log(1+y)$ in a Taylor series in the neighbourhood of the point (0, 0). (June-2023)
Q.6) The temperature $u(x,y,z)$ at any point in space is $u=400xz^2$ find the highest temperature on surface of the sphere $x^2+y^2+z^2=1$. (June-2023)
Q.7) If $u=x^2\tan^{-1}\frac{y}{x}-y^2\tan^{-1}\frac{x}{y}$ find the value of $\frac{\partial^2u}{\partial x \partial y}$. (June-2023)
Q.8) Find shortest distance from the origin to the curve $x^2+4xy+6y^2=140$. (June-2023)
Q.9) Find $\frac{du}{dt}$ if $u=x^2+y^2, x=a\cos t, y=b\sin t$. (June-2023, Dec-2023)
Q.10) State Lagrange's theorem hence verify for $f(x)=x^2+2x$ defined in the interval [-2, 0]. (Dec-2023)
Q.11) Find the first six terms of the expansions of the function $e^x\cos y$ in a Taylor series in the neighbourhood of the point (0, 0). (Dec-2023)
Q.12) Estimate the extreme values of the function $x^3+y^3-63(x+y)+12xy$. (Dec-2023)
Q.13) If $u=\left(\frac{y-x}{xy}\right)\left(\frac{z-x}{xz}\right)$ find the value of $x^2u_x+y^2u_y+z^2u_z$. (Dec-2023)
Q.14) Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube. (Dec-2023, Dec-2024, June-2025)
Q.15) Expand $(1+x)^x$ by Maclaurin's Theorem. (June-2024)
Q.16) Find the Maximum value of $u=\sin x \sin y \sin(x+y)$. (June-2024)
Q.17) Find the Maximum and Minimum value of $u=a^2x^2+b^2y^2+c^2z^2$, where $x^2+y^2+z^2=1$ and $lx+my+nz=0$. (June-2024)
Q.18) Expand $\log x$ in power $(x-1)$ by Taylor's theorem and hence find the value $\log 1.1$. (June-2024)
Q.19) Find the points where the function $x^3+y^3-3axy$ has maximum or minimum value. (Dec-2024)
Q.20) Find the Taylor's expansion of $y=\sin x$ about point $x=\pi/2$. (Dec-2024)
Q.21) Verify Rolle's Theorem for the function $y=x^2+2, a=-2$ and $b=2$. (Dec-2024)
Q.22) If $u=\tan^{-1}\frac{x^3+y^3}{x-y}$ then prove that $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\sin 2u$. (June-2025)
Q.23) Find the first 3 terms in the Maclaurin series for i) $\sin^{-1}x$ ii) $xe^{-x}$. (June-2025)
Q.24) Find the Taylor series for the function $x^4+x-2$ centered at a=1. (June-2025)
Q.25) If $x^x y^y z^z = C$ then show that $\frac{\partial^2 z}{\partial x \partial y}=-(x\log ex)^{-1}$. (June-2025)
Expected Sample Questions for Dec-2025 Exam (Based on Syllabus Analysis)
Q.1) Find the directional derivative of $\phi = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$. (Predicted)
Q.2) Discuss the conditions for Maxima and Minima of functions of two variables using Lagrange's Multipliers method. (Predicted)
Q.3) Expand $f(x, y) = e^x \sin y$ in powers of $x$ and $y$ as far as terms of third degree. (Predicted)
Q.4) Verify Mean Value Theorem for $f(x) = \log x$ in $[1, e]$. (Predicted)
Q.5) If $u = f(r)$ where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$. (Predicted)
Module 2: Calculus (8 hours)
Definite Integral as a limit of a sum and Its application in summation of series; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. Multiple Integral, Change the order of the integration, Applications of multiple integral for calculating area and volumes of the curves.
Previous Years questions appears in RGPV exam.
Q.1) Prove that $\Gamma(n)\Gamma(1-n)=\frac{\pi}{\sin n\pi}$. (Nov-2022)
Q.2) By Changing the order of integration, evaluate $\int_{0}^{1}\int_{0}^{\sqrt{1-x^2}}y^2dydx$. (Nov-2022)
Q.3) Find the area of a plane in the form of a quadrant of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. (Nov-2022)
Q.4) Change the order of integration in $\int_{0}^{1}\int_{x^2}^{2-x}xy\ dy\ dx$ and hence evaluate. (June-2023, Dec-2023)
Q.5) Evaluate $\iint e^{2x+3y}dxdy$ over the triangle bounded by $x=0, y=0$ and $x+y=1$. (June-2023)
Q.6) Show that $\beta(l,m)=\frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m)}$. (Dec-2023, Dec-2024)
Q.7) i) Find the value of $\Gamma(\frac{3}{2})$.
ii) Evaluate
$\int_{0}^{1}x^3(1-\sqrt{x})^2dx$. (Dec-2023)
Q.8) Find the volume of the solid generated by the revolution of the Cardioid $r=a(1+\cos\theta)$ about the initial line. (June-2024)
Q.9) Prove that $\int_{0}^{\infty}\cos(x^2)dx=\frac{1}{2}\sqrt{\frac{\pi}{2}}$. (June-2024)
Q.10) Show that the surfaces area of the solid generated by revolution of the loop of the curve $x=t^2, y=t-\frac{1}{3}t^3$ about the x axis is $3\pi$. (June-2024, June-2025)
Q.11) Evaluate $\iint xy\ dx\ dy$ where the region of integration is $x+y<1$ in the positive quadrant. (June-2024, June-2025)
Q.12) The part of the parabola $y^2=4ax$ cut off by the latus rectum revolves about the tangent at the vertex. Find the volume of the reel thus generated. (Dec-2024)
Q.13) Prove that: $\int_{0}^{1}\frac{dx}{\sqrt{1-x^4}} = \frac{(\Gamma(1/4))^2}{6\sqrt{2\pi}}$. (Dec-2024)
Q.14) Evaluate: i) $\int_{0}^{2}x^2(1-x)^3dx$
ii) $\int_{0}^{1}\sqrt{x(1-x)}dx$. (Dec-2024)
Q.15) Prove that the surface area of the solid generated by the revolution of the ellipse $x^2/a^2+y^2/b^2=1$ about the major axis is : $2(\pi ab) \cdot \{\sqrt{1-e^2} + \frac{\sin^{-1}e}{e}\}$. (Dec-2024)
Q.16) Change the order of integration in the following integral and then evaluate $\int_{0}^{\infty}\int_{x}^{\infty}\frac{e^{-y}}{y}dydx$. (June-2025)
Q.17) Evaluate $\int_{0}^{\infty}\int_{x}^{\infty}\frac{e^{-y}}{y}dydx$. (June-2025)
Expected Sample Questions for Dec-2025 Exam (Based on Syllabus Analysis)
Q.1) Evaluate $\int_{0}^{\infty} e^{-x^2} dx$ using Gamma function. (Predicted)
Q.2) Find the volume of the solid generated by revolving the area bounded by the curve $y^2 = x^3$ and the line $x = 4$ about the x-axis. (Predicted)
Q.3) Change the order of integration and evaluate $\int_{0}^{\infty}\int_{0}^{x} x e^{-x^2/y} dy dx$. (Predicted)
Q.4) Express $\int_{0}^{1} x^m (1-x^n)^p dx$ in terms of Beta function. (Predicted)
Q.5) Evaluate $\iiint xyz \, dx \, dy \, dz$ over the region bounded by $x=0, y=0, z=0$ and $x+y+z=1$. (Predicted)
Module 3: Sequences and series (6 hours)
Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions; Fourier series: Half range sine and cosine series, Parseval’s theorem.
Previous Years questions appears in RGPV exam.
Q.1) Obtain the Fourier series to represent $f(x)=x\sin x, 0
Q.2) Test the convergence of the series $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n-1})$. (Nov-2022)
Q.3) Test the convergence of the series $1+\frac{x}{2}+\frac{x^2}{5}+\frac{x^3}{10}+...+\frac{x^n}{n^2+1}+...$ (June-2023, Dec-2023)
Q.4) Expand as a half range $f(x)=x\sin x$ series and cosine series for the interval $0
Q.5) Expand $f(x)=x\sin x, 0
Q.6) Find the $a_0$ and $a_n$ if the function $f(x)=x+x^2$ is expanded in Fourier series defined in (-1, 1). (June-2023)
Q.7) Show that Sequence ($x_n$) where $|x|<1$ converge to 0. (June-2024)
Q.8) Find the Fourier Series for the function $f(x)=x\sin x, (-\pi
Q.9) Find the Fourier Series for the function $f(x)=x+x^2, (-\pi
Q.10) Show that the following series is Convergent. $\frac{1}{4} - \frac{1}{4^2} + \frac{1}{4^3} - \frac{1}{4^4} + \dots$ (Dec-2024)
Q.11) Obtain the Half-Range Sine Series for \( f(x) = e^x \) in \( 0 < x < 1 \). (Dec-2024)
Q.12) Show that the sequence $(n^{1/n})$ converge to 1. (Dec-2024, Dec-2024)
Q.13) Find the half range sine series for $f(x)=x(\pi-x)$ in $(0,\pi)$. Hence Deduce that $1-\frac{1}{3^3}+\frac{1}{5^3}-\cdots=\frac{\pi^3}{32}$. (June-2025)
Expected Sample Questions for Dec-2025 Exam (Based on Syllabus Analysis)
Q.1) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$. (Predicted)
Q.2) Find the Fourier series expansion for $f(x) = |\sin x|$ in $(-\pi, \pi)$. (Predicted)
Q.3) Discuss the convergence of the geometric series $\sum_{n=0}^{\infty} ar^n$. (Predicted)
Q.4) Obtain the half-range cosine series for $f(x) = (x-1)^2$ in the interval $0 < x < 1$. (Predicted)
Q.5) Use Parseval’s identity to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^4}$. (Predicted)
Module 4: Vector Spaces (8hours)
Vector Space,Vector Sub Space, Linear Combination of Vectors,Linearly Dependent, Linearly Independent, Basis of a Vector Space,Linear Transformations.
Previous Years questions appears in RGPV exam.
Q.1) Let W be a subspace of a finite dimensional vector space V(F). Then $\dim(V/W) = \dim V - \dim W$. (Nov-2022)
Q.2) Show that $T: V_2(R) \to V_3(R)$ is defined as $T(a, b) = (a-b, b-a, -a)$ is linear transformation. (Nov-2022)
Q.3) If $w_1$ and $w_2$ be two subspace of V(F) then Show that $w_1 \cap w_2$ also subspace of V(F). (June-2024)
Q.4) Show that the set $w=\{(a,b,0):a,b \in R\}$ is subspace of $R^3$. (Dec-2024)
Q.5) Are the following vectors LD? If so express one of these as a LC of other two.
$X_1=(1,3,4,2)$, $X_2=(3,-5,2,2)$, $X_3=(-2,1,-3,2)$. (Dec-2024)
Q.6) Let $W_1$ and $W_2$ be subspaces of a vector space V and assume that $W_1 \cap W_2 = \{0\}$. Let $w_1 \in W_1$ and $w_2 \in W_2$ be such that $w_1 \neq 0$ and $w_2 \neq 0$. Prove that $\{w_1, w_2\}$ is linearly independent. (June-2025)
Q.7) i) Prove that $W_1 \cap W_2$ is a subspace of V.
ii) Give an example to show that
$W_1 \cup W_2$ need not be a subspace of V.
iii) Is $W_1 \cup W_2$ a subspace of V?
(June-2025)
Expected Sample Questions for Dec-2025 Exam (Based on Syllabus Analysis)
Q.1) Define Linear Dependence and Independence. Check if vectors (1, 2, 1), (2, 1, 4), (4, 5, 6) are linearly dependent. (Predicted)
Q.2) Define Basis and Dimension of a Vector Space. Show that the set $S = \{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$ forms a basis for $R^3$. (Predicted)
Q.3) State Rank-Nullity Theorem. Find the rank and nullity of the linear transformation $T: R^3 \to R^2$ defined by $T(x,y,z) = (x+y, y+z)$. (Predicted)
Q.4) Let $T: R^3 \to R^3$ be a linear transformation defined by $T(x,y,z) = (x+2y-z, y+z, x+y-2z)$. Find a basis for the range of T. (Predicted)
Q.5) Prove that the intersection of any collection of subspaces of a vector space V is a subspace of V. (Predicted)
Module 5: Matrices (8 hours)
Rank of a Matrix, Solution of Simultaneous Linear Equations by Elementary Transformation, Consistency of Equation, Eigen Values and Eigen Vectors, Diagonalization of Matrices, Cayley-Hamilton theorem and its applications to find inverse.
Previous Years questions appears in RGPV exam.
Q.1) Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{pmatrix}$. Hence find $A^{-1}$. (Nov-2022)
Q.2) Examine the consistency of the system of the following equations. If consistent, solve the equations. $x+y+z=3$, $x+2y+3z=4$, $x+4y+9z=6$. (Nov-2022)
Q.3) Diagonalize the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 6 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$. (Nov-2022)
Q.4) i) If A is a skew symmetric matrix then show that $A^2$ is a symmetric matrix.
ii)
Find eigen values of the matrix $\begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$. (June-2023)
Q.5) Find the inverse of $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$ by using elementary row transformations. (June-2023, Dec-2023)
Q.6) Verify Cayley Hamilton theorem for the matrix A and hence find $A^{-1}$ for $\begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$. (June-2023)
Q.7) Test the consistency and hence, solve the following set of equations. $x+2y-z=3$, $3x-y+2z=1$, $2x-2y+3z=2$, $x-y+z=-1$. (June-2023, Dec-2023)
Q.8) Transform the following matrix into normal form and hence find its rank $\begin{pmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{pmatrix}$. (Dec-2023)
Q.9) Find the eigen values and eigen vectors of matrix $\begin{pmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$. (Dec-2023, June-2025)
Q.10) Show that the following equations are consistent and solve them.
$x-y+2z=4$,
$3x+y+4z=6$, $x+y+z=1$. (June-2024)
Q.11) Find the Characteristic equation of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -4 \\ 1 & 0 & -1 \end{pmatrix}$ and hence find the Eigen values and Eigen vectors. (June-2024)
Q.12) Show that the following matrix A is Diagonalizable. $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$. (June-2024)
Q.13) Investigate for what values of $\lambda$ and $\mu$ the simultaneous equations. $X+Y+Z=6$, $X+2Y+3Z=10$, $X+2Y+\lambda Z=\mu$. (June-2024, June-2025)
Q.14) Find a similarity transformation that diagonalise the matrix. $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$. (Dec-2024)
Q.15) Find the Eigen value and Corresponding Eigen Vectors of the following Matrix. $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$. (Dec-2024)
Q.16) Diagonalizable the matrix. $\begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$. (June-2025)
Q.17) Reduce the matrix $\begin{pmatrix} 3 & 2 & -1 \\ 4 & 2 & 6 \\ 7 & 4 & 5 \end{pmatrix}$ to the normal form, hence find its rank. (June-2025)
Expected Sample Questions for Dec-2025 Exam (Based on Syllabus Analysis)
Q.1) State and prove Cayley-Hamilton Theorem. Verify it for the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ and find $A^{-1}$. (Predicted)
Q.2) Find the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10 \end{pmatrix}$ by reducing it to normal form. (Predicted)
Q.3) Investigate the values of $\lambda$ and $\mu$ so that the equations $2x+3y+5z=9$, $7x+3y-2z=8$, $2x+3y+\lambda z=\mu$ have (i) no solution, (ii) a unique solution, (iii) an infinite number of solutions. (Predicted)
Q.4) Determine the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$. (Predicted)
Q.5) Diagonalize the matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$ and hence find $A^4$. (Predicted)